System Register Hijacking: Compromising Kernel Integrity
By Turning System Registers Against the System

Jennifer Miller, Manas Ghandat, Kyle Zeng, Hongkai Chen, Abdelouahab (Habs) Benchikh,
Tiffany Bao, Ruoyu Wang, Adam Doupé, Yan Shoshitaishvili

/ o
sefcam ES {izonaState

security engineering for future computing

Linux Kernel Control Flow Hijacking

Normal Control
Flow

Hijacked Control
Flow

Local Privilege
Escalation

Memory Security
Corruption Mitigation

Mitigations

FinelBT
RANDKSTACK

CR Pinning

Back in 2017...

Exploiting the Linux kernel via packet sockets

Guest blog post, posted by Andrey Konovalov

c. Overflow the block and overwrite retire_blk_timer field. Make retire_blk_timer->func point to
native_write_cr4 and make retire_blk_timer->data equal to the desired CR4 value.
d. Wait for the timer to be executed, now we have SMEP & SMAP disabled on the current core.

“Security-Sensitive System Registers”

Mitigation Enforcement
e cr0, cr4, EFLAGS, MSR EFER
Architectural Structure Information

e cr3, IDTR, GDTR, GSBASE

System Register Hijacking

We propose System Register Hijacking (SRH) as a class of exploitation
techniques which involve writes to Security-Sensitive System Registers via Control
Flow Hijacking in order to bypass mitigations or expand attacker capabilities.

System Register Hijacking Techniques

cr4: Bypass SMEP/SMAP
cr0: Bypass Write Protect
EFLAGS .AC: Temporarily Bypass SMAP

GSBASE: Bypass FinelBT

... see the paper for more

SWAPGS Stack Pivoting
A universal stack pivoting gadget and FinelBT bypass on x86-64 Linux.

The technique reuses code from syscall entrypoints:

e endbr64 - swapgs = mov rsp, gs:XXxXX

Entrypoints are architecturally required to start with endbr64 under IBT.

Outcomes

FinelBT Paranoid was introduced by Linux kernel developers, which adds a CFI
check on the caller-side, mitigating our bypass.

A specification change was made to Intel's upcoming feature, Flexible Return
and Event Delivery (FRED), to no longer require endbr64 at FRED entrypoints.

ARTIFACT ARTIFACT ARTIFACT

Read the Paper: EVALUATED | | EVALUATED | | EVALUATED

usenix usenix usenix
sssssssssssssssssssssssssssssssss

AVAILABLE REPROD

https://tinyurl.com/srhpaper

Thank Youl!

Jennifer Miller
EC jmill@asu.edu

. ,\ /
& blog.zolutal. " Arizona Stat
N@Zgli?allj.;sll(;/.social % U;Iiflzll?:itya © SeFCm

security engineering for future computing

