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Back in 2017...

Exploiting the Linux kernel via packet sockets

Guest blog post, posted by Andrey Konovalov

c. Overflow the block and overwrite retire_blk_timer field. Make retire_blk_timer->func point to
native_write_cr4 and make retire_blk_timer->data equal to the desired CR4 value.
d. Wait for the timer to be executed, now we have SMEP & SMAP disabled on the current core.




“Security-Sensitive System Registers”

Mitigation Enforcement
e cr0, cr4, EFLAGS, MSR EFER
Architectural Structure Information

e cr3, IDTR, GDTR, GSBASE



System Register Hijacking

We propose System Register Hijacking (SRH) as a class of exploitation
techniques which involve writes to Security-Sensitive System Registers via Control
Flow Hijacking in order to bypass mitigations or expand attacker capabilities.




System Register Hijacking Techniques

cr4: Bypass SMEP/SMAP
cr0: Bypass Write Protect
EFLAGS .AC: Temporarily Bypass SMAP

GSBASE: Bypass FinelBT

... see the paper for more



SWAPGS Stack Pivoting
A universal stack pivoting gadget and FinelBT bypass on x86-64 Linux.

The technique reuses code from syscall entrypoints:

e endbr64 - swapgs = mov rsp, gs:XXxXX

Entrypoints are architecturally required to start with endbr64 under IBT.



Outcomes

FinelBT Paranoid was introduced by Linux kernel developers, which adds a CFI
check on the caller-side, mitigating our bypass.

A specification change was made to Intel's upcoming feature, Flexible Return
and Event Delivery (FRED), to no longer require endbr64 at FRED entrypoints.
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